Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

May 2020 Development Debrief

for Infinity v1.0

1 M)

<&

22 Hioviba

Project Start Date: 9/15/2019
Project Manager: Chris Stone
Project Status: In Development

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 1/43

Hiovita

INFINITY PROTOCOL BETA v1.0

Table of Contents

Versatile Context-Driven Serial Communication

Abstract 4
1. Introduction 5
2. The Need for a New Protocol 7
3. The Hardware Design 8
3.1 The Infinity Portal 8
3.2 Cables and Signals 10
3.3 The Example Project 11
4. The Infinity Protocol 12
4.1 Device Types 13
4.2 Device Status 13
4.3 Device Contexts 14
4.4 Locked Devices 15
4.5 Stream Commands and the Escape Sequence 15
4.6 Hardware Notes 16
5. The Software Design 17
5.1 The Device Firmware 17
5.2 The Static Library 18
5.3 The Portal App 19
5.4 The App Installer 22
6. The Infinity Website 23
6.1 Official Devices 24
6.2 The Downloads Section 25
6.3 The Developer Program 25
7. The Hardware Test 26
7.1 Setup 26
7.2 Procedure 27
8. The Software Test 28
8.1 Hypothesis 28
8.2 Setup 28
8.3 Procedure 29
8.4 Results 30
INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief

Revision 1.9

2/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

9. Discussion 30
10. Conclusion 32
10.1 Project State 33
10.2 Further Development 34
11. Bibliography 35
INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 3/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
Abstract

While developing another recent project that required a robust system for serial
communication, it was determined that USB would be required to interface a device with
modern PCs, but that USB is a poor fit for most small CPUs, including the one that the project in
question is based upon. As most developers tend to translate from USB to a proprietary TTL
interface, the same route was taken for this project. However, unlike typical development for
proprietary interfaces, several measures were taken to make this new protocol both accessible
and profitable to the general public.

This paper discusses the research, theory, design, manufacturing, documentation,
assembly, interfacing, and beta testing of Infinity, a new versatile, context-driven serial protocol
for use with small CPUs. The process began with a general investigation into modern hardware
requirements and then segwayed into the design of the Infinity Portal, the world’s first translator
from USB Type C to TTL logic, and the library and desktop software required to interface it with
the new protocol. From there, an example project was designed and manufactured which would
implement the Infinity Protocol as a peripheral to observe and test basic Infinity data exchange
with a PC. A digital oscilloscope was used to debug both the peripheral and PC software until it
could perform the intended operations.

Finally, a hardware test was performed to evaluate the peripheral’s immunity to electrical
noise, and the results were synthesized with a software test, performed to quantify the tolerance
of the system to bitrate variance and assess the integrity of the protocol over large data
transfers. The hypothesis agreed with the results, as all data was transferred without a single

error while the transmission bitrate discrepancy fell within the recommended bounds.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 4/43

Hiovita

1.

INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

Introduction

The world around us is filled with serial data, or data which is transferred as a series of
bits." Such data is transferred in packets between devices, with a variety of hardware interfaces
using optical, electrical, and electromagnetic signals to represent the data in transmission.? In a
recent project, there arose a need to communicate with a device based around a small CPU,
the ATtiny1617.% The device, similar to its popular cousin, the ATmega328P,* has several
hardware interfaces to convert data stored in RAM?® to binary® electrical signals, which can then
be decoded and loaded into the memory of another processor. However, to communicate with
modern PCs, a USB interface will be required.” The Universal Serial Bus® (USB) system is
differential,’ and the required hardware is complex and difficult to implement on CPUs like those
in the ATtiny and Atmega series. '° Thus, for these devices, a translator between USB and some
other protocol designed for the speed and hardware of smaller CPUs must be used to
communicate with modern PCs." Most companies choose to develop a proprietary protocol for
interfacing between their devices and software, and where external compatibility is required,
they try to make most important features work over the SPI, 12C, or CAN protocols.'? 13415
These protocols are rarely a first choice, as implementing them drives up development cost and
hardware complexity.®

For the specific needs of the project in question, all the aforementioned protocols are
poor fits due to overhead,'” synchronization,' or the requirement of several wires to transmit
data. Asynchronous data transfer'® has the advantage of fewer wires and less hardware
limitations, as transfer speed is not dependent on what external clock speeds a device can
generate. Thus, an asynchronous protocol, tailored to the specific needs of the project must be

developed. Such a protocol should feature standardized basic functionality that may be

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9

5/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
implemented on demand by the application programmer, but also allow the device to be set into
a configuration where data can be interpreted in a pre-defined context. This removes all
overhead once the device has been set up. As not to create yet another proprietary protocol that
remains hidden from the general public, this protocol could be documented and released to the
public with small developers in mind, who will likely also benefit from its framework, allowing
development to begin immediately, where default functionality like descriptors® can be
implemented later when the more critical routines are nailed down.

Releasing the protocol to the public will require desktop software to abstract the driver
library®' that interfaces the USB translator, documentation of the protocol and its specifications,
and an example project to demonstrate and test the protocol’s working capability. It will also be
beneficial to make a website where all the protocol’s documents and software can be collected
and served.

This paper debriefs the current development state of Infinity, a new versatile,
context-driven serial protocol which gives power and flexibility back to developers while
providing a standard framework for device-to-device communication. The paper’s discussion
ranges from the theory behind the protocol to the design and documentation of the various
hardware and software tools required for its implementation. Finally, it outlines the tests were
performed to quantify the electrical reliability of the hardware, and the extensive data transfers
that were conducted under the protocol to verify the integrity of the system when faced with
reasonable variations in the transmission bitrate between devices. If the bitrate variation
between the transmitter and receiver remains within +4%, a reliable hardware connection is
established, and no unreasonable electrical noise is imposed upon the system, then even very

large data transmissions will occur with little or no error.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 6/43

Hiovita INFINITY PROTOCOL BETA v1.0

2.

Versatile Context-Driven Serial Communication
The Need for a New Protocol

USB has virtually eclipsed its competitors in PC communication. Both PCs and devices
designed for them tend to feature only USB hardware, with RS2322? and parallel®® ports being
phased out of newer computer models.?* As a result, devices that are neither designed for, nor
could benefit from USB must use a translator between the complicated, high-speed, differential
protocol and a protocol natively supported by the device. Because most devices have custom
communication requirements, companies tend to develop their own protocols to translate to
USB and communicate between their devices. Other published alternatives include the
Inter-Integrated Circuit protocol (12C), developed by Philips Electronics, the Serial Peripheral
Interface (SPI), and the Computer Area Network (CAN) protocol. Each of these has its
disadvantages, however, such as limited transfer speeds, peculiar hardware requirements, and
mandatory synchronization.

Asynchronous data transfer, on the other hand, has the advantage of fewer wires and
independence of clocks, given that transmission and evaluation frequencies are within a certain
margin. Changing clock speeds mid-transmission is also easily achieved without a requirement
for synchronization. When it comes to asynchronous serial protocols, however, the
Recommended Standard?® series of protocols is the only prominent system, which requires
support for higher voltages than most small devices can easily produce without extensive
external hardware. These standards, as previously mentioned, have been phased out of most
modern computer systems for this reason. As a result, generic USB to Transistor-Transistor
Logic (TTL)? convertors are designed for converting USB data to asynchronous 3.3v-peak logic
signals for use with small CPUs. Any defined data exchange system (protocol) development is
left to the developer of the final device being interfaced. There is clearly a need for a new

protocol for asynchronous communication between such devices.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 7143

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

3. The Hardware Design

Figure 3.1
An abstract view of a typical Infinity setup

3.1 The Infinity Portal

Figure 3.1.1
Converting USB Type-C to Infinity via the Infinity Portal

e | L
| 1K)

The Infinity Portal bridges the gap between USB Type C and infinity devices. This allows

for easy connection to a PC. After selecting the FT230X?” from Future Technology Devices

International® (FTDI) as the CPU for the translator board, supporting components were selected

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 8/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
and identified, a Bill of Materials*® (BOM) was compiled, and a Printed Circuit Board (PCB)*°
hardware layout was developed. Altium Circuitstudio®' was used to develop and convert the
schematics® and Gerber® files for the project. After the development was complete, the circuit
board files were sent to the JIALICHUANG Electronic Technology Development Co., Ltd.** of
Shenzhen China for production, and orders for all BOM components were placed online at the
Shenzhen LCSC Electronics® marketplace.

Upon arrival, it was evident that the manufacturer had made a fatal error during circuit
board production, making several holes on the board the wrong shape and size. The circuit
boards were manually modified, drilling out the correct area to make room for the components.
A modified board was selected, paste solder®® was administered to the soldering surface, the
components were secured in place, and the board was heated to 300° C using a reflow*” gun.
The board was allowed to cool and inspections of the mechanical connection were made with
an Optical Inspection Microscope (OIM). Poor or unformed mechanical connections were
touched up manually with a TS100 digital soldering iron*® using a custom bit. The Infinity
receptacle was glued to the board, soldered in place manually, and the entire board was
cleaned in isopropyl alcohol.

The new board was plugged into a PC via a USB Type C cable, and the portal showed
up in the device manager. The descriptors were customized using the FT_Prog desktop
application*® from FTDI, and the circuit board was encased in electrical tape for reduced

vulnerability to damage from static electricity.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 9/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

3.2 Cables and Signals

Figure 3.2.1
The 5-Pin Infinity Cable

4

A suitable cable was developed for connecting Infinity devices. A plug and receptacle
system with rotational and connectional symmetry was developed using machined male and
female rounded pin headers*' from Boom Precision Electronics** (BOOMELE). The electric

signal lines were assigned to the pins and their corresponding receptacles as outlined in the

table below.
Table 3.2.1
Signals on the Infinity Bus
Pin Signal | Description
Outer Pins TX The transmit line, from the perspective of the receptacle.
Inner Pins RX The receive line, from the perspective of the receptacle.
Center Pin GND The common reference potential for the data signals.
Table 3.2.2

Infinity Bus absolute ratings

Variable | Description Unit Min Max
D, Data Logic Low Signal \' GND GND + 0.5
Dy Data Logic High Signal \' GND + 2.5 GND +5.5
Co Capacitance of Data Lines pF - 50

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 10/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
Data signal ranges, as outlined in Table 3.2.2, can vary up to 5.5v, although it is
recommended that they peak closer to 5v. Because most CPUs consider anything 2v or greater
to be a logical 1 and anything 0.8v or less to be a logical zero (with a liberal hysteresis** margin
in between), Infinity standards merely require all logical 1 signals be 2.5v or greater, and all
logical zero signals be 0.5v or less. If a logical unit intended for use with Infinity cannot meet
these ratings and requirements, additional hardware must be used to do so. Line capacitance

must be kept at a minimum for fast data transfer.

3.3 The Example Project

Figure 3.3.1
The Example Project

The project that inspired Infinity’s development is too complicated to benefit an

exposition of the protocol’s capabilities. Thus, the Infinity Example Project was developed,
based on the ATmega328P, a popular hobbyist-friendly CPU which comes in large Dual Inline
Packages* (DIP). The controller features a Universal Asynchronous Receiver and Transmitter*®
(UART), a digital hardware peripheral that bridges the gap between clocked shift registers* and

regular registers in the CPU’s data space.*’ Like the Infinity Portal, the example project was

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 11/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
designed in CircuitStudio and orders were placed at JIALICHUANG and LCSC. However, due to
complications in China from the recent outbreak of COVID-19, the order was heavily delayed.

During the order’s extended production, software and assembly instructions were
developed for the example project along with the new Hiovita Supporting Files Licence*®
(HSFL). The license outlines the use conditions for supporting files which apply to developers
who download supporting files like those that make up the Infinity Example Project from the
Hiovita Official Downloads*® page. This was another step in making the protocol practical and
available for other developers around the world.

Upon arrival, the example project components were manually soldered to the circuit
board, as the design was framed with the consideration that some developers may not have
reflow equipment on hand. After assembly, the board was cleaned with isopropyl alcohol and
the power cable was soldered together and plugged in. The board was plugged into a
breadboard using pin headers, and the optional LEDs* were added to the setup. The blue LED
turned on on plug in. An Atmel AVR ICE 5! was then plugged into a PC and attached to the ISP>
socket on the device. Atmel Studio® was used to load the example Infinity peripheral firmware
onto the ATmega328P, and the red LED turned on upon completion. The assembled example

project was then unplugged and set aside until the hardware test.

4. The Infinity Protocol

The contextual nature of the Infinity protocol comes from a simple framework. All data
transmission is evaluated within a context, or a set of predefined rules for that data’s
interpretation. Because the rules are predefined by the software engineer, there is no need for

overhead; the controller is free to change between data evaluation contexts throughout the

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 12/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
exchange of data, and where more complicated or time-sensitive routines must be performed,

multiple contexts can work together to achieve an end result.
4.1 Device Types

Infinity Beta 1.0 recognises several device types based on the roles they play in data
transfers. This list may be updated in the future. Note that all devices must be self-powered.

Table 4.1.1
The various Infinity devices and their functions

Device Function

Controller Controllers initiate and maintain data transmission. Controllers can use one or more peripherals in helping
accomplish a task, such as reading the ambient temperature, stimulating a system, or interacting with users and
the environment. Systems will typically have one controller and many peripherals. A controller may enter
peripheral mode to communicate with other controllers.

Peripheral Peripherals aid controllers in accomplishing a task. They only send data on demand, and have several contexts
which controllers can use to set up an ideal data exchange scheme.

Portal A portal is a controller strictly meant for connecting Infinity peripherals to a PC or other USB-enabled device. It
cannot enter into a peripheral mode, thus all controllers must do so to use it.

Interpreter An interpreter is a device that mediates several Infinity controllers, peripherals, and portals where limited cables
are required, or multiple controllers need to frequently access the same peripherals. Interpreters can mediate
devices in frequent use or establish dedicated channels between devices. The interpreter will undergo greater
development in later versions of Infinity.

4.2 Device Status

Peripherals must keep controllers aware of their current state. After each instruction sent
to a peripheral is evaluated, it must determine whether to stay in its current state or change to
another state, and notify the controller of the change. Peripherals do so by sending status
codes. Controllers are responsible for reading a peripheral’s status codes and executing fallback

routines if the status is not what is required.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 13/43

Hiovita INFINITY PROTOCOL BETA v1.0
Versatile Context-Driven Serial Communication
Table 4.2.1
Supported device status codes and their descriptions
Code | Name Description
0x0 RDY The peripheral is ready to enter a new context.
0x1 ERR The peripheral has encountered an error. The controller should restart communication.
0x2 UNIMP The requested context is unimplemented; the peripheral has returned to the RDY state.
0x3 LCKD The peripheral is locked, and must be unlocked before sending data or commands..
0x4 STRM The peripheral has entered a context that expects an indefinite amount of data.The context can only be left
through the use of the stream escape sequence.
0x5 BLK The peripheral is in a context that expects a definite amount of data. The peripheral will enter the RDY state
once all the data has been sent.
0x6 UNKNOWN This code is used to signal the end of the status codes. Any code a controller receives of equal or greater
value will be considered invalid. Similarly to the ERR code, the controller should restart communication.
Peripherals should never send a code of equal or greater value intentionally.

4.3 Device Contexts

Contexts will always reside at a specific address between 0x0 and OxFF. When a

peripheral is in the RDY state, a controller can select the context by sending the context

address to the peripheral. The first 16 addresses are reserved for Infinity default features, which

will be further developed in the future. All developer-defined stream contexts should be placed

directly after the Infinity contexts. All developer-defined block contexts should begin directly after

the stream contexts. When a controller requests an address that has no context routine

associated with it, the peripheral should return an UNIMP code and return to the RDY state.

Table 4.3.1

Infinity context arrangement by address, where STRM,,,q and BLK,,4 are the addresses of the
last stream and block context respectively

Address

Contexts

Description

0x00- OxOF

Infinity Contexts

Reserved space for future default features. When requested, UNIMP should be sent.

0x10 - STRM, 4

Stream Contexts

The stream section. When requested, STRM should be sent.

(STRM,, + 0x01) - BLK, 4

Block Contexts

The block section. When requested, BLK should be sent.

(BLK,,q + 0x01) - OXFF

Unused Space

Any leftover address spaces. When requested, UNIMP should be sent.

INFINITY PROTOCOL BETA v1.0

Development Debrief

ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Revision 1.9 14 /43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
4.4 Locked Devices

The locked context is a special stream context that has no address. The context can be
left by sending the unlock sequence. When the sequence is received, the peripheral should
send the RDY status code and prepare to enter the context the controller selects. If anything
other than the escape code is sent, the peripheral should send the LCKD status code. If the
escape code is received, but followed by something other than the unlock command, it should
send the ERR status code, but remain in the locked context and continue looking for another
escape code, as all devices that encounter errors must return to the locked context. Each

peripheral must enter the locked context on restart and boot.
4.5 Stream Commands and the Escape Sequence

In stream contexts, any byte can be used as data, with no reserved characters.
However, this creates a need for a method of leaving a stream, as unlike block contexts, stream
contexts have no definite point after which data transmission ends: they can be active for a
microsecond or a month. The escape code can be used to evaluate the next byte as a
command. The code, hexadecimal 0x55, was carefully chosen because of its binary equivalent
representation. When sending this code, the data signal will resemble the longest perfect
square wave possible. This pattern, when followed by a valid command, is almost impossible for
pseudo-random electrical noise to produce, and prevents peripherals from being unlocked on
plug in. The two commands currently supported are the unlock command and the leave
stream command. Sending these commands after an escape code can unlock a peripheral or
leave a stream context respectively. The peripheral should send a RDY status code upon

successful command execution. Peripherals that encounter unsuccessful command execution

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 15/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
or an invalid command code after an escape character should return the ERR status code and

enter the locked context.

Table 4.5.1
Infinity codes and commands
Code | Name Function
0x55 Escape Code Indicates to a peripheral that the next byte is a command.
0x00 Unlock Command Instructs a peripheral to leave the locked context.
0x01 Leave Stream Command Instructs a peripheral to leave a stream context.

Because it is likely that controllers will need to send a byte with the same value as the
escape code to be evaluated in the current stream context, an escape character can be
escaped by sending another escape character before it. When two escape characters in a row
are encountered by a peripheral, the first one should be discarded, and the second passed on
to the current stream context. Controllers must never send a byte equal to the escape character
to a stream context without escaping it. Peripherals do not pass commands to a master, so data
returned from a peripheral will never be escaped. Escape codes and commands have no

function in block contexts.

4.6 Hardware Notes

In addition to the considerations already outlined in the Cables and Signals section of
the Hardware Design, it should be noted that all transmit and receive signals must be active
high. The protocol does not feature a parity, preferring software verification of data integrity for
critical exchanges, and thus any parity UART function must be turned off. After a low start bit,
eight data bits must be sent, followed by one stop bit from a peripheral and two stop bits from a
controller. Because a peripheral can only send bytes of data when requested by the controller,
the controller’s extra stop bit allows the peripheral’s accumulation to reset, preventing error

accumulation due to slight imbalances in transmission bitrates between devices.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 16 /43

Versatile Context-Driven Serial Communication

Once the hardware was complete, several software packages had to be developed.
Custom firmware was required for the example project, a static Windows™ library>* for the
Infinity Portal, and a Windows™ desktop application®® for end-user use. Automation, efficiency,

and professionalism were central focuses of the development process.

Figure 5.1.1
The 28-pin ATmega328P

vuulilL1UUL1UULULULU

Ni1iN0N1N11Nn1N41Nn1N-

Custom device firmware was developed for the ATmega328P in AVR assembly®. The
program utilizes the registers of the device to set interrupts and handlers that interface the

built-in UART hardware to act as an Infinity peripheral.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Hiovita

5.2 The Static Library

Figure 5.2.1

A graphical symbolization of a static library packaging

— G

h

INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

> I/

Static libraries® are collections of compiled code meant for inclusion in future

programming projects. In an effort to document and support Infinity, a static c++ library was

developed to abstract Infinity for other developers to use. The static library was later posted on

the Infinity Website and used to build the Infinity Portal App.

INFINITY PROTOCOL BETA v1.0

Development Debrief

ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Revision 1.9

18/43

Versatile Context-Driven Serial Communication

Figure 5.3.1
The interface of the Infinity Portal App

W' Hiovita - Infinity Portal

The device through portal is now unlocked
The speed for portal was successfully updated
Testing the device through portal was successful.
tests were performed with the following results:
bytes sent with errors
bytes sent with @ errors
bytes sent with @ errors

Length errors:

The Portal App was developed in Visual Studio Community 2019% using a mixture of C*
and C++.%° The static library was abstracted and routines were written to account for portal,
peripheral, and user error. A visual interface was developed through the Ultralight™ GPU®'
framework using the Hypertext Markup Language (HTML)®, Cascading Style Sheets® (CSS),
and Javascript® in Visual Studio Code®. Graphics were developed for the app using the GNU
Image Manipulation Program (GIMP)®® and Inkscape® for raster®® and vector®® graphics

manipulation respectively.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

The app is currently console-based, and the console can be opened by pressing the
console icon. In the console, commands for connecting portals, communicating with devices
and automatically testing the setup can be entered. Table 5.3.1 lists the current commands
supported by the Portal App, their parameters, and parameter requirements. Feedback about
command execution will be provided after the execution, if any, completes. Possible feedback
messages types are shown in Table 5.3.2. Note that all commands are executed by typing
portal followed by the command and each parameter, separated by spaces.

Table 5.3.1
Portal App commands and parameters

Command Parameters Function and Requirements
clear - Clears the console.
list - Lists all portals connected to the PC with their ID and port. Excludes

portals in use by other apps.

open portal_id Opens the portal with the entered ID for communication and resets any
devices connected to it. The portal can no longer be used by other apps
once opened.

portal_id must be a valid ID of an available portal connected to the PC.

close portal_id Closes a portal opened earlier, making it available for use by other apps.

portal_id must be a valid ID of an open portal.

unlock portal_id Sends the unlock command to the device through the portal. The
command will fail and reset the device if it is not in the locked context.

portal_id must be a valid ID of an open portal.

changecontext portal_id *, context_code Selects a new context on the device through the portal. The command will
fail if the device is not in the ready state.

portal_id must be a valid ID of an open portal.

context_code must be a valid context address for the connected device.

leavestream portal_id Leaves a stream context on the device through the portal by sending it the
leave stream command. The command will fail if the device is notin a
stream context.

portal_id must be a valid ID of an open portal.

required parameter

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 20/43

Hiovita

INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

Command

Parameters

Function and Requirements

setspeed

portal _id *, bitrate

Currently for testing purposes only. Sets the bitrate of the portal to the
provided value. The command will fail if the device through the portal is not
in the ready state. Note that all values entered will be floored to the
nearest supported bitrate on the Infinity Portal.

portal_id must be a valid ID of an open portal.

bitrate must be an integer between 5000 and 3000000

test

portal_id *, test_count

Currently for testing purposes only. Tests an Infinity Example Project
through the provided portal using a predefined testing routine. The
command will fail if the device is not in ready mode, or any single test
encounters a testing error. Each test will attempt to send 256 bytes to each
of the test contexts implemented in the example project software, and
verify how many bytes were returned correctly. Successful testing will
continue until the specified number of tests have completed, and testing
results will appear in the console. The device will be returned to the ready
state after the testing completes.

portal_id must be a valid ID of an open portal.

test_count must be a positive integer.

sendblock

portal_id *, data

Sends the user-entered data through the portal. The command will fail if
the connected device is not in a data context. A max of 256 characters can
be sent at a time, and all non-standard characters will be removed before
sending. Note that the device does not need to be in a block context to
send block data. If the device is in a stream context, all escape characters
in the block will be doubled and escaped, and the resulting block will be
sent to the device.

portal_id must be a valid ID of an open portal.

data must be a string of one to 256 numbers, letters, or basic symbols.

colors

Lists all the colors in Table 5.3.2 and what they signify.

required parameter

Table 5.3.2

Portal App message colors and their significance

#EEEEEE

#66FF99
#FFBF67

#FF7366

INFINITY PROTOCOL BETA v1.0

Development Debrief

Information

Success
Warning

Error

General information related to a command’s execution.

Informs the user of successful command execution.

Warns the user of unexpected or unusual events or parameters during execution.

Informs the user that the execution has failed and why.

ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Revision 1.9 21/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

5.4 The App Installer

Figure 5.4.1
Interface components of the Infinity Portal App Installer

V f?{?inity Portal 1.0

The Installer will install all the files required to run
on your computer. sl before you
cense terms and conditions.

il

Installing an app on Windows 10 is more challenging than ever. Countless hardware and
software requirements must be met for the program to function correctly, and all files must be
placed in the correct location. To allow the average person to use the Portal App, an App

Installer was designed and built to automatically collect and install all the required files.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 22/43

Versatile Context-Driven Serial Communication

Figure 6.1
The desktop and mobile version of the Infinity Website

s
:éﬁé Hiovika

IN€inity” .

@'g Flioviba
Infinity”

Interminable Innovation,

Infinite
Inspiration.

Interminable Innovation,
Infinite Inspiration.

Official Devices Software Downloads Developer
Official Devices
Software Downloads
Developer

_/

A website was developed to document items related to the Infinity Protocol. Files, icons,
and markup was custom made for the site, which was programmed from scratch without the aid
of development tools. Located at https://hiovita.net/infinity, the website contains several sections

which provide resources to developers and end-users.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Versatile Context-Driven Serial Communication

Figure 6.1.1
A block for the Infinity Portal which appears on the Official Devices section

Infinity Portal

USB C = Infinity

Bring the power of Infinity to your Windows PC with Infinity Portal.
USB C hardware makes for easy connection to the latest
computers while maintaining backwards compatibility.

The Official Devices section serves as a digital home for information about the Infinity
Portal and any other official Infinity-compatible devices. It features a link to the Hiovita Store™

where future pre-assembled devices can be purchased.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

6.2 The Downloads Section

Figure 6.2.1
The Hiovita Downloads banner

Official
Downloads

In an effort to make the Infinity Portal App more accessible, a downloads section for the
app was added to the site. The link will take users to the Hiovita Official Downloads’' page,

where they can download an app Installer for Windows 10.

6.3 The Developer Program

Figure 6.3.1
A logo for the Infinity Developer Program

A developer program was drafted to aid new designers looking to implement Infinity. In
addition to the Static Library, Example Project and Implementation Specifications, the Infinity
Website will eventually feature a developer identification program which provides cost-effective

cloud services and drivers.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 25/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

7. The Hardware Test

Figure 7.1
A digital oscilloscope and Atmel ICE programmer, used throughout the experiments
. s, JII3
D a OO0 A
D a OO0
5 2 (o)
-‘:' || \ ([
P — .:_ \\W ‘, |
L] 2D 32O))
—7 - :‘D /lx N — ‘
22 2 3 YIS
& 5 9:__\7) | \ 2/'JD/
© 'o ‘o ﬂ

Although not the central focus of the system evaluation, the hardware test will help set
up the software test, and verify the presence of the reliable hardware connection required for
successful software testing. The hardware test will also assess the resistance of the system to

being unlocked by random electrical noise on plug-in.

7.1 Setup

1. Obtain an assembled Infinity Example Project, or order and assemble one using the link
on the Developer section of the Infinity Website.

2. Power the example project using the power cable. If the ATmega328P CPU has not
been preprogrammed with the device firmware, follow the programming instructions in
the example project’s package to install the firmware on the device using a specialty
programming tool. If the optional LEDs were added to the setup, the blue and the red
LED should turn on after the device firmware is run.

3. Connect the Infinity Portal to the example project using the Infinity Cable

4. Now plug the Infinity Portal into the PC via a USB Type C cable. Wait a few seconds for
the PC to recognise it and install the drivers.

5. Download the latest version of the Infinity Portal App Installer from the Infinity Website.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 26/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

6. Run the installer, accept the license agreement, and open the app.
7. Click on the console icon to open the console.

8. Type portal list in the console to see a list of available portals. The one that was just
plugged in should appear.

9. Power up a digital oscilloscope and pull the Infinity Cable out of the example project’s
receptacle just enough to expose the pins. Connect a probe to the center pin; this is the
receive line for the device. Connect another probe to one of the outermost pins. This is
the transmit line of the device.

7.2 Procedure

1. Using the oscilloscope, observe the data lines. Determine whether there is an
unreasonable amount of electrical noise on either signal.

2. Observe the voltage level on the transmit line. It should be no less than 4.9v and no
greater than 5.5v.

3. Do the same for the receive line. Its voltage should be between 2.9v and 3.3v.

4. Now unplug the Infinity Cable from the Portal and plug it back in several times. Observe
the oscilloscope as each insertion and removal creates large amounts of electrical noise.
Some of the noise spikes will inevitably trigger the device to begin reading the line for a
new data frame. Upon completing the evaluation, the device software will send a
message that the device is locked if the data read is anything other than the unlock
sequence. This should look like a quick low pulse on the transmit line, followed by a high
section twice as long, and then a long low section. If the optional LEDs were added, the
red LED can be observed instead to determine if the device is still locked.

5. Continue plugging the cable in and out until it has been inserted and removed 1000
times. If the device unlocks, record it, unplug the device, and plug it back in to lock it
again.

6. Now turn back to the Infinity Portal App. Type portal open followed by the id of the portal
that was listed earlier. The app should open the portal for communication.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 27143

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

7. Type portal unlock followed by the id of the portal to prepare the device for software
testing. The red LED should turn off and the green LED should turn on if the optional
LEDs were added to the setup.

8. Make a statement about the setup’s resistance to hardware noise on plug-in.

8. The Software Test

The digital abstraction was developed to distill an infinitely complex electrical world into
two distinct values - 1 and 0. This makes it possible for a software test to come back with perfect
accuracy. USB, for example, is designed to never have a hardware error if possible. The Infinity
Protocol’s success rests on its ability to facilitate error-free data exchange. Thus, the software
test sends a large amount of data from a PC at various bitrates and reports errors where data
was lost or returned incorrectly from the testing device to determine the system’s ability to

transmit data without errors.

8.1 Hypothesis

If the bitrate variation between the transmitter and receiver remains within +4%, a
reliable hardware connection is established, and no unreasonable electrical noise is imposed

upon the system, then even very large data transmissions will occur with little or no error.

8.2 Setup

1. Type portal test followed by the id of the portal and at least 5 for the number of tests. As
data is being transferred, zoom in on the data with the oscilloscope and select
frequency from the horizontal menu on both channels.

2. Switch the oscilloscope to single mode, freezing the display. Record the frequency of
the device’s transmit line and double it to get the transmission bitrate, as bits are
transmitted on both the high and low edges of the wave. The value should be around
9600 bits/sec.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 281743

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

3. Given that the temperature, humidity, and the voltage powering the device remain
constant, the device transmission bitrate drift should be negligible. Use the
previously-recorded transmission bitrate as a reference and develop a list of various
rates within £4.5% of this value.

4. Now calculate and record a bitrate 8% greater and 8% less than the reference. These
values will be used as a control.

5. Type portal clear to clear the console.

8.3 Procedure

1. Type portal setspeed in the Portal App followed by the id of the portal and the
calculated bitrate that was 8% greater than the reference in bits/sec.

2. Type portal test again, followed by the id of the portal and 1000 for the number of tests.

3. Testing could continue for several minutes. If the testing completes successfully, record
the number of bytes sent and the number of errors for each of the three sub-tests.
Record any length errors.

4. Repeat steps 1-3, this time using the calculated speed that was 8% less than the
reference.

5. This completes the control testing. Type portal clear where necessary to clean up the
console after tests.

6. Now repeat the test for each of the rates on the list of rates within £4.5% of the
reference. The green and yellow LEDs should turn on and off throughout the test if the
optional LEDs were added to the setup. Record all the results in a table.

7. Synthesize the results of the software test with the hardware test, and use them to
evaluate the reliability of both the setup and the protocol.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 29/43

Hiovita INFINITY PROTOCOL BETA v1.0
Versatile Context-Driven Serial Communication
8.4 Results
Table 8.4.1
The software test results
Errors
Type Bitrate | Variance | Bytes Sent
Echo | Add Subtract | Length | Total
Control | 10195 +8% N/A N/A N/A N/A N/A N/A
Control | 8685 -8% N/A N/A N/A N/A N/A N/A
Test 9440 0% 768,000 0 0 0 0 0
Test 9534 +1% 768,000 0 0 0 0 0
Test 9346 1% 768,000 0 0 0 0 0
Test 9629 +2% 768,000 0 0 0 0 0
Test 9251 2% 768,000 0 0 0 0 0
Test 9723 +3% 768,000 0 0 0 0 0
Test 9157 -3% 768,000 0 0 0 0 0
Test 9817 +4% 768,000 0 0 0 0 0
Test 9062 -4% 768,000 0 0 0 0 0
Test 9864 +4.5% 768,000 0 0 0 0 0
Test 9015 -4.5% 384,000 210 237 146 0 593

9. Discussion

The hardware test was a success. The voltage on each signal line was within the

required range and the signals were free of excessive idle noise. While plugging the Infinity

Cable in and out 1000 times, and generating significant electrical noise in the process, the red

LED remained on throughout the test, as the device could not be unlocked by electrical noise.

Upon typing the unlock command within the Portal App, however, the device was immediately

unlocked and ready for data transfer to begin. These results provided a solid basis for the

software test by verifying the existence of a reliable hardware connection and the absence of

excess electrical noise.

INFINITY PROTOCOL BETA v1.0

Development Debrief

ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY

Revision 1.9

Copyright © 2020 Hiovita. All Rights Reserved.

30/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

During the software test, the Portal App threw errors when trying to test the control
bitrates with a £8% variance from the device bitrate. The App verifies each data transfer with the
device multiple times during the test and refuses to continue sending data when repeated
verification errors occur. The control test results clearly set the precedent that data transfer well
outside the 4% bitrate margin set by the hypothesis is error-prone and unreliable, as well as
confirming the app security’s effectiveness against sending corrupt data.

Although the positive 4.5% test came back without error, the negative 4.5% test revealed
several transmission errors, and had to be broken up into 10 parts of 50 tests with cool-down
periods for the CPU in between. This was necessary because the 1000-test block refused to
complete in its entirety and return any results when a testing error was encountered in the block.
As more tests were run, the number of errors gradually rose, until tests began to fail. After 500
tests were reached, the battery level of the PC had drained down, and it was plugged in to
continue the testing. At this point, even single tests could not be completed without testing
errors, and no further results could be collected. It is likely that the PC’s USB voltage rose
slightly upon plug-in and this change carried into the USB block that the testing device was
connected to. According to the ATmega328P datasheet, the frequency of the internal oscillator
has a positive correlation with the supply voltage and temperature.’ This both fits with the
results of the experiment and qualifies the assumption that the device transmission bitrate will
not change significantly throughout the experiment, as the errors occurred on the
negative-going threshold of the Infinity Portal bitrate and the errors increased with each test as
the CPU heated up. Near the thresholds, even a tenth of a percent variation in the bitrate from
clock drift can corrupt the data transmission.

The tests within the 4% margin, however, all came back without any errors, and the

hypothesis was verified to be correct. Given that the controller in an Infinity data exchange has a

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 31/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
clock with at least 1% accuracy (the Infinity Portal in this case), the peripheral (such as an
ATmega328P) can have a clock accuracy that drifts up to 3% away from its nominal frequency
without posing a threat to the integrity of transferred data. This allows peripherals to utilize
cheaper CPUs and cut down on external electronic components: critical requirements for simple
and compact devices.

According to the datasheet for the ATmega328P, similar to all CPUs of its class, the
frequency of the internal oscillator will not vary outside of 3% of its nominal value when the
recommended voltage is applied.” Newer CPUs with silicon oscillators have even better ratings,
and in the case of an inadequate oscillator rating, external quartz crystal oscillators™ and
oscillator calibration™ can be used to bring the frequency variance within an acceptable range
for data transmission.

Combined with the results from the hardware test, the software test results lay the
foundation for further Infinity Protocol development by confirming the hardware capabilities of
the Infinity Example Project and the Infinity Portal. From here, further development of default
Infinity features, desktop automation, and example software can proceed with confidence that

the central requirements of the protocol have been met.

10. Conclusion

Infinity development is ready to begin its next stage. With experimental results verifying
the reliable hardware and software capabilities of both the protocol and the example setup
within a wide margin of bitrate error, desktop automation, developer registration, aesthetic
upgrades and further development of Infinity’s default features can begin. This will serve both
the project that inspired the protocol’s development and the projects of other developers in need

of an asynchronous protocol for small CPUs.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 32/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

10.1 Project State

The Infinity Portal proved itself to be an invaluable hardware accessory for converting
between the latest USB Type C-enabled devices and the new Infinity Protocol throughout the
testing. It is unlikely that it will need any further hardware development. Because it was
designed for use with any serial protocol, not just Infinity, even those who have their own
communication scheme can interface it as a generic device through FTDI’s virtual COM port
drivers, widening its marketable audience.

Through the Infinity Website, developers around the world can view and download
resources to get the most out of Infinity for their next small CPU project. The plan for a
reasonably-priced developer program will make it possible for small start-ups to gain a
professional presence in the electronics industry without paying outrageous fees for basic
features. This gives Infinity the potential to break the cycle of reserved, proprietary
asynchronous TTL protocols.

With the Infinity Portal App, it has never been easier to test an Infinity connection from a
PC. Useful functions for unlocking devices, setting the transmission speed and context, sending
data, and automated testing make working with Infinity devices a breeze, and enabled the
efficient collection of the critical data that was used to quantify Infinity’s capabilities.

With context-driven data exchange, developers get maximum efficiency and an array of
default features while retaining the freedom to choose which features to implement and how.
This opens the door for standardization, but also allows developers to begin working on the

most critical features of their communication scheme first.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 33/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

10.2 Further Development

The Infinity default feature set is the next priority for development. Systems for device
naming, changing speeds mid-transmission, and error recovery will need to be implemented to
take full advantage of Infinity’s contextual nature. The Infinity Portal circuit board will also need
to be cast in resin for a sleek and watertight finish. As development continues, a new plug and
receptacle system for the Infinity Cable must be selected as well, as the current temporary
system is unnecessarily bulky.

The developer program is also in need of additional resources and a system of
developer registration. Said system will need to be programmed dynamically in PHP. In addition,
a database must be constructed to store the information. This will come with a new set of
graphics and interface requirements as well.

Furthermore, the Infinity Portal App is in need of automation and a graphical user
interface. Although the console was adequate for testing and early development, automatic
detection of Portals and devices connected to them will reduce the time it takes to develop new
features significantly, while presenting end users with a responsive way to interact with the
Infinity network.

Future versions of Infinity could also contain provisions for other features such as power
transfer over the data lines, allowing devices that do not use large amounts of power to power
and charge themselves from the receive line. Research will be performed into this technology to
determine if it can be used to cut down on cable cost, weight, and length. It may even be
possible to develop a superspeed version of the protocol that runs on differential hardware as
an alternative to USB where faster speeds are required. Regardless, with the precedent set by
the development and testing results previously discussed, Infinity has the potential to redefine

the future of versatile, context-driven serial communication for small CPUs.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 34/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
11. Bibliography

1. Serial data. (2020, May 31). Www.Digi.Com.
https://www.digi.com/resources/documentation/Digidocs/90001541/reference/r_s
erial_data.htm?TocPath=Serial%20communication%7C___ 2

2. Miettinen, A. (2016, October 17). Future is bright for data transmission. Www.Oulu.Fi.
https://www.oulu.fi/university/node/42774

3. ATTINY1617 - 8-bit Microcontrollers. (2019). Www.Microchip.Com.
https://www.microchip.com/wwwproducts/en/ATTINY1617

4. ATmega328P - 8-bit AVR Microcontrollers. (2019). Microchip.Com.
https://www.microchip.com/wwwproducts/en/ATmega328p

5. Ibrahim, D. (2010). Random Access Memory - an overview | ScienceDirect Topics.
Www.Sciencedirect.Com.
https://www.sciencedirect.com/topics/engineering/random-access-memory

6. Introducing binary - Revision 1 - GCSE Computer Science - BBC Bitesize. (2019).
BBC Bitesize. https://www.bbc.co.uk/bitesize/guides/zwsbwmn/revision/1

7. Cunningham, A. (2014, August 18). How USB became the undefeated king of
connectors. Wired UK. https://www.wired.co.uk/article/usb-history

8. Front Page | USB-IF. (n.d.). Www.Usb.Org. Retrieved March 25, 2020, from

https://www.usb.org/

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 35/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

9. Sattel, S. (2017, June 23). What Is Differential Signaling? | EAGLE | Blog. Eagle
Blog.
https://www.autodesk.com/products/eagle/blog/what-is-differential-signaling/

10. Miller, W. (2015, March 25). USB Connectivity for MCUs: Which is Right for Your
Next Design? | DigiKey. Www.Digikey.Com.
https://www.digikey.com/en/articles/techzone/2015/mar/usb-connectivity-for-mcus
-which-is-right-for-your-next-design

11. Knowledgebase - Premium USB. (2020). Www.Premiumusb.Com.
https://www.premiumusb.com/adapters

12. Johnson-Davies, avid. (2019, September 30). Technoblogy - UPDI Programmer
Stick. Www.Technoblogy.Com. http://www.technoblogy.com/show?20JT

13. Dhaker, P. (2018). Introduction to SPI Interface | Analog Devices.
Www.Analog.Com.
https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.
html#

14. 12C Info — I12C Bus, Interface and Protocol. (2019). I12C Info — 12C Bus, Interface and
Protocol. https://i2c.info/

15. Controller Area Network (CAN) Overview - National Instruments. (2019, March 5).
Www.Ni.Com.
https://www.ni.com/en-us/innovations/white-papers/06/controller-area-network--c

an--overview.html

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 36/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

16. SPI vs 12C Protocols - Pros and Cons. (2019, February 4). Arrow.Com.
https://www.arrow.com/en/research-and-events/articles/spi-vs-i2c-protocols-pros-
and-cons

17. Boosten, M. (1998, March 11). Transmission overhead and optimal packet size.
Hsi.Web.Cern.Ch.
http://hsi.web.cern.ch/HSI/dshs/publications/wotug21/dsnic/html/node9.html

18. Pfile, R., Chien, S., & Koskie, S. (2017). Synchronous vs. Asynchronous.
Et.Engr.lupui.Edu.
http://et.engr.iupui.edu//~skoskie/ECE362/lecture_notes/LNB25_html/text12.html

19. Austerlitz, H. (2003). Asynchronous Method - an overview | ScienceDirect Topics.
Www.Sciencedirect.Com.
https://www.sciencedirect.com/topics/engineering/asynchronous-method

20. Peacock, C. (2018, April 12). USB in a NutShell - Chapter 5 - USB Descriptors.
Www.Beyondlogic.Org. https://www.beyondlogic.org/usbnutshell/usb5.shtmi

21. Lattimer, B. (2019, January 7). Overview of developing Windows client drivers for
22. The RS-232 protocol. (2019, April 17). Https://Www.Omega.Com/En-Us/.
https://www.omega.com/en-us/resources/rs232-serial-communication

22. Centronics. (1976). centronics :: 37400040F Model 306 Technical Manual Mar76. In
Internet Archive.

23. USB devices - Windows drivers. Docs.Microsoft.Com.
https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-driver-de

velopment-guide

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 371743

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

https://archive.org/details/bitsavers_centronicschnicalManualMar76_13986426/mode/2u
p

24. Lundqvist, T. (2016, May 6). The void left by the parallel port. Medium.
https://medium.com/@tltx/the-void-left-by-the-parallel-port-51eb6c919e8a

25. EIA Technical Standards. (2019). Www.Ecianow.Org.
https://www.ecianow.org/eia-technical-standards

26. Bies, L. (2019, December). USB to RS232 converters. USB to RS232 Converters.
https://www.lammertbies.nl/comm/info/rs-232-usb

27. Future Technologies. (2018). FT230X USB Bridge | UART. Www.Ftdichip.Com.
https://www.ftdichip.com/Products/ICs/FT230X.html

28. Future Technologies. (2017). FTDI Chip Home Page. Www.Ftdichip.Com.
https://www.ftdichip.com/

29. Arena. (2019, May 23). What is a Bill of Materials (BOM). Arena Solutions.
https://www.arenasolutions.com/resources/articles/creating-bill-of-materials/

30. Printed Circuits. (2020). What is a Printed Circuit Board (PCB)? Printed Circuits
LLC. https://www.printedcircuits.com/what-is-a-pcb/

31. Altium Limited. (2020). Professional PCB design tool | CircuitStudio.
Www.Altium.Com. https://www.altium.com/circuitstudio/

32. Build EC. (2020, April 17). Electronic Schematics — What You Need To Know. Build
Electronic Circuits.

https://www.build-electronic-circuits.com/electronic-schematics/

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 38/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

33. Ucamco. (2020). Official Gerber Format Website. Ucamco.
https://www.ucamco.com/en/gerber

34. JIALICHUANG Electronic Technology Development Co., Ltd. (2017). Get Started -
JLCPCB: Help & Support. Support.Jicpcb.Com. https://support.jicpcb.com/

35. LCSC. (2017). Welcome to LCSC. Lcsc.Com.
https://lcsc.com/about.html#/about/company

36. Cooks On Gold. (2019, April 1). What Is Solder Paste? And How Do You Use It?
The Bench.
https://www.cooksongold.com/blog/equipment-technique-focus/what-is-solder-pa
ste-and-how-do-you-use-it

37. SMT Process. (2015). Reflow Soldering Process. SURFACE MOUNT PROCESS.
http://www.surfacemountprocess.com/reflow-soldering-process.html

38. ByVision. (2013, March 14). The role of optical inspection in today’s demanding
electronics industry. Vision Engineering.
https://www.visioneng.us/resources/articles/the-role-of-optical-inspection-in-today
s-demanding-electronics-industry/

39. Hackaday. (2017, July 24). Review: TS100 Soldering Iron. Hackaday.
https://hackaday.com/2017/07/24/review-ts100-soldering-iron/

40. Future Technologies. (2020). FTDI Utilities. Www.Ftdichip.Com.
https://www.ftdichip.com/Support/Utilities.htm#FT_PROG

41. LCSC. (2019b). BOOMELE(Boom Precision Elec) | BOOMELE(Boom Precision

Elec) C9742 | Pin Header & Female Header | LCSC. Lcsc.Com.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 39/43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
https://Icsc.com/product-detail/Pin-Header-Female-Header Boom-Precision-Elec
-2-54mm-1-40P-round-Headers-Pins_C9742.html

42.LCSC. (2019a). BOOMELE(Boom Precision Elec) | LCSC Electronics. Lcsc.Com.
https://lcsc.com/brand-detail/86.html

43. Cornell Lassp. (1994, June 30). What’'s Hysteresis? Www.Lassp.Cornell.Edu.
http://www.lassp.cornell.edu/sethna/hysteresis/WhatlsHysteresis.html

44. Hackaday. (2018, November 8). The Dual In-Line Package And How It Got That
Way. Hackaday.
https://hackaday.com/2018/11/08/the-dual-in-line-package-and-how-it-got-that-wa
y/

45. WhatlS. (2011). What is UART (Universal Asynchronous Receiver/Transmitter)?
Whatls.Com.
https://whatis.techtarget.com/definition/UART-Universal-Asynchronous-Receiver-
Transmitter

46. Basic Electronics Tutorials (BET). (2013, August 30). Shift Register - Parallel and
Serial Shift Register. Basic Electronics Tutorials.
https://www.electronics-tutorials.ws/sequential/seq_5.html

47. Atmel. (2020c). AVR Memory - Developer Help. Microchipdeveloper.Com.
https://microchipdeveloper.com/8avr:memory

48. Stone, C. (2020c). Hiovita Supporting Files Licence.

https://hiovita.net/licenses/HSFL.pdf

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 40/43

Hiovita

49.

50.

INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
Stone, C. (2020b, February 5). Hiovita Downloads. Hiovita.Net.
https://hiovita.net/downloads/?file=portal-setup-1.0.exe
LedsMagazine. (2019). What is an LED? | LEDs Magazine. Ledsmagazine.Com.

https://www.ledsmagazine.com/leds-ssl-design/materials/article/16701292/what-i

s-an-led

51. Atmel. (2020b). Atmel-ICE. Www.Microchip.Com.
https://www.microchip.com/DevelopmentTools/ProductDetails/ ATATMEL-ICE

52. Atmel. (2016c). AVR910: In-System Programming.
http://ww1.microchip.com/downloads/en/appnotes/atmel-094 3-in-system-progra
mming_applicationnote_avr910.pdf

53. Atmel. (2020a). Atmel Studio IDE - Developer Help. Microchipdeveloper.Com.
https://microchipdeveloper.com/atstudio:start

54. TLDP. (2003, April 11). Static Libraries. Www.TIdp.Org.
https://www.tldp.org/HOWTO/Program-Library-HOWTO/static-libraries.html

55. Microsoft. (2019b, April 11). Build desktop apps for Windows PCs.
Docs.Microsoft.Com. https://docs.microsoft.com/en-us/windows/apps/desktop/

56. Atmel. (2016b). AVR Microcontrollers AVR Instruction Set Manual OTHER
Instruction Set Nomenclature.
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-se
t-manual.pdf

57. Microsoft. (2019c, April 25). Walkthrough: Creating and Using a Static Library (C++).
Microsoft.Com.

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 41143

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication
https://docs.microsoft.com/en-us/cpp/build/walkthrough-creating-and-using-a-stat
ic-library-cpp?view=vs-2019

58. Microsoft. (2019a). Visual Studio 2019 | Download for free. Visual Studio.
https://visualstudio.microsoft.com/vs/

59. TutorialsPoint. (2019). C Language Overview. Www.Tutorialspoint.Com.
https://www.tutorialspoint.com/cprogramming/c_overview.htm

60. CPP Network. (2020). cplusplus.com - The C++ Resources Network.
Www.Cplusplus.Com. https://www.cplusplus.com/

61. Ultralight LLC. (2020). Ultralight - Pure-GPU HTML Ul Engine for Desktop and
Games. Ultralig.ht. https://ultralig.ht/

62. W3Schools. (2018). HTML Tutorial. W3schools.Com.
https://www.w3schools.com/html/

63. W3Schools. (2019a). CSS Tutorial. W3schools.Com.
https://www.w3schools.com/css/

64. W3Schools. (2019b). JavaScript Tutorial. W3schools.Com.
https://www.w3schools.com/Js/

65. Microsoft. (2016, April 14). Visual Studio Code. Visualstudio.Com.
https://code.visualstudio.com/

66. GIMP Foundation. (2019). GIMP. GIMP. https://www.gimp.org/

67. Inkscape Website Developers. (2019). Draw Freely | Inkscape. Inkscape.Org.

https://inkscape.org/

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 42 /43

Hiovita INFINITY PROTOCOL BETA v1.0

Versatile Context-Driven Serial Communication

68. Weinreb, B. (2013, February 12). What Are Raster Graphics? Definition, Terms, and
File Extensions. Learn.G2.Com. https://learn.g2.com/raster-graphics

69. Adobe. (2020). What is vector art - vector art for beginners | Adobe.
Www.Adobe.Com.
https://www.adobe.com/creativecloud/illustration/discover/vector-art.html

70. Stone, C. (2020d, February 5). Shop Online. Hiovita.Net. https://hiovita.net/store

71. Stone, C. (2020a, February 5). Downloads. Hiovita.Net.
https://hiovita.net/downloads/?file=portal-setup-1.0.exe

72. Atmel. (2015a). ATmega328P 8-bit AVR Microcontroller with 32K Bytes In-System
Programmable Flash DATASHEET Features.
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Micr
ocontrollers-ATmega328P_Datasheet.pdf

73. Atmel. (2015b). ATmega328P Datasheet (p. 274).
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Micr
ocontrollers-ATmega328P_Datasheet.pdf

74. Atmel. (2013, August 25). Quartz Crystal Oscillator and Quartz Crystals. Basic
Electronics Tutorials. https://www.electronics-tutorials.ws/oscillator/crystal.html

75. Atmel. (2016a). AVR053: Internal RC Oscillator Calibration for tinyAVR and
megaAVR Devices.
http://ww1.microchip.com/downloads/en/appnotes/atmel-2555-internal-rc-oscillat

or-calibration-for-tinyavr-and-megaavr-devices_applicationnote _avr053.pdf

INFINITY PROTOCOL BETA v1.0 ALL DOCUMENT CONTENT IS FOR INFORMATIONAL PURPOSES ONLY Copyright © 2020 Hiovita. All Rights Reserved.

Development Debrief Revision 1.9 43 /43

